
K.Manju et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.552-556

www.ijera.com 552 | P a g e

Assessment of Efficacy among String Quest

K.Manju
1
, R. Brindha

2
, V. Lathika

3
, Mr. A. M. Ravishankkar

4
, Mr. T.

Yoganandh
5

1,2,3
UG Student-Department of CSE Jay Shriram group of institutions, Avinashipalayam, India

4,5
Assistant Professor- Department of CSE Jay Shriram group of institutions, Avinashipalayam, India

ABSTRACT
In a large spatial database the work mainly deals with the approximate string search. Particularly we examine

the query range append with the string similarity search in both Euclidean space and Road network. We dub this

query the spatial approximate string (SAS) query. We propose an approximate solution in Euclidean space, the

D-tree which embeds min-wise signatures into an R-tree. The min-wise signature for an index node u keeps a

clear representation of the union of q-grams from the sub tree of u. We find the pruning functionality of such

signatures based on the set resemblance between the query string and the q-grams from the sub tree of index

nodes. We discuss about the estimation of selectivity of a SAS query in Euclidean space, for which we present a

novel adaptive algorithm to find the balanced partitions using both the spatial and string information stored in

the tree. In Road networks, we propose a novel exact method, RSASSOL, which significantly performs the

baseline algorithm. The RSASSOL method partitions the road network, adaptively searches relevant sub graphs,

and prunes candidate points using both the string matching index and the spatial reference nodes. The efficiency

and effectiveness of our approaches is by the extensive experiments on large real data sets.

Keywords- Approximate string search, range query, road network and spatial databases

I. INTRODUCTION
Data mining also known as Knowledge

Discovery or Knowledge Discovery in Database

(KDD), is the process of extracting or mining the

data from large amount of databases. Text mining is

one of the applications of data mining which mainly

involves the process of extracting interesting

information and knowledge from unstructured text

documents. Keyword search over a large amount of

data is an important operation in a wide range of

domains. In spatial databases, wherekeyword search

becomes a fundamental building block for an

increasing number of real-world applications, and

proposed the IR
2
-Tree. A main limitationof the IR

2
-

Tree is that it onlysupports exact keyword search.

Approximate string search is necessarywhen users

have a fuzzysearchcondition, or a spelling error when

submitting the query, or the strings in the database

contain some degree of uncertainty or error. In the

context of spatial search could be combined with any

type of spatial queries. In this work, we focus on

range queries and dub such queries as Spatial

Approximate String (SAS) queries. We denote SAS

queries in Euclidean space as (ESAS) queries.

Similarly, it extends SAS queries to road networks

(referred as RSAS queries).In ESAS, this motivates

the need for string matching. A critical component of

record matching involves determining whether two

strings are similar or not: Two strings are considered

matches if their corresponding (string) attributes are

similar. String similarity is typically measured via a

similarity function that, given a pair of strings returns

a number between 0 and 1 a higher value indicating a

greater degree of similarity with the value 1

corresponding to equality. This function is used to

perform a similarity join between two input relations

that returns pairs of strings whose similarity is above

an input threshold.

II. RELATED WORK
1. INCORPORATING FORMAL STRING

INDEX TRANSFORMATION IN RECORD

MATCHING

In this paper, the author considered the

problem of record matching for user-defined string

transformation as input. The similarity between two

strings is defined by transformations coupled with an

underlying function of similarity. To lookup an input

record against a table of records, where we make this

approach with effectiveness by a fuzzy match

operation. Here we have an additional table of

transformation as input. The cognizant of

transformations is nothing but the improvement in the

quality of record matching and the efficient retrieval

based on our index structure. The characteristic of

this scenario is the most input sub-strings do not

match with any member of the dictionary, sowe

developed a compact filter which efficiently filters

out a large number of sub-strings that cannot match

with any member of dictionary. For membership, the

RESEARCH ARTICLE OPEN ACCESS

K.Manju et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.552-556

www.ijera.com 553 | P a g e

sub-strings which pass out filter are then verified by

checking it. We demonstrate real datasets that

approach significantly outperforms both current best

exact methods as well as probabilistic methods, that

may not identify a small percentage of matching sub-

strings.

2. RETRIEVING TOP-K PRESTIGE-BASED

RELEVANT SPATIAL WEB OBJECTS

In this paper, the author handles the problem of

retrieving web documents which is relevant to query

of a keyword within a pre-specified spatial region.

There are two stages in query processing. In the First

stage, indexing is for the filtration of web document.

In the second stage, employed the another index.

(e.g.., R-tree). To integrate the R-tree with signature

files here a hybrid index structure is proposed. For

the purpose of pruning the search space at a query

time, both spatial information and text information is

utilized by enables the hybrid index structure.

However, this proposal is limited by its use of

signature files (e.g.., the number of false matches is

linear in the collection size and there is no sensible

way of using signature files for handling ranking

queries). To process a new type of query the

combination of R
*
-tree and bitmap indexing is

developed by hybrid index structure is called l-closest

keyword query. To enable the efficient processing of

the location-aware top-k ranking query, it utilizes

both location and text information to prune the search

space which integrates the R-tree and inverted files

for the IR-tree in hybrid index structure.

3. SELECTIVITY ESTIMATION IN

SPATIAL DATABASES

In this paper, the author proposed a several

new techniques for spatial selectivity estimation.

These techniques are based on the spatial indices,

binary space partitioning, and the novel notion of

spatial skew. In database the critical component of

query processing is selectivity estimation. For the

spatial selectivity estimation there will be a very little

work in providing accurate and efficient techniques,

despite the increasing popularity of spatial databases.

In this domain the relational techniques do not

perform well because the spatial data defers from the

relational data. From the previously known

techniques,the author can able to show that : (a)

Sampling and parametric techniques which work well

in the relational one-dimensional world do not work

well for spatial data. (b) A BSP based partitioning

that we call Min-skew outperforms the other

techniques over a broad range of query workloads

and datasets.

III. EXISTING SYSTEM
Approximate string search is necessary

when the users have a fuzzy condition search or

spelling error when submitting the query. By

completely ignoring the spatial component of a

query, we evaluate only the string predicate by

matching the index which is built as a string in both

ESAS and RSAS query to produce a direct solution.

The string solution which contains a point is not

satisfied by the spatial predicate has been pruned in

post processing step after all similar strings has been

retrieved.

1) The string solution suffers the same scalability

and performance issues as the spatial solution.

2) In existing spatial databases additionally we

answer for SAS query to enable the efficient

processing of standard spatial queries which is a

spatial-oriented solution.

IV. PROPOSED SYSTEM
In our proposed system, we divide a roads

network G={V,E} into t edge-disjoint sub graphs

G1,G2,……,Gt, where t is a user parameter, and for

each sub graph build one string index. From V as

reference nodes, we also select a small subset VR of

nodes: they are used to prune candidate points/nodes

whose distance to query point q are out of query

range r. In our RSAS query framework it consists of

five steps.

1) We find all the sub graphs which intersect with

the query range.

2) To retrieve the points we use the filtration tree

of the sub graphs whose string are potentially

similar to the query string.

3) We performing the calculation of lower and

upper bounds of their distance to the query

point, using VR to prune away some of the

candidate points.

4) Between the query string and the strings of

candidates the exact edit distance is performing

to prune away some further candidate points.

After this step, the string predicate has been

fully explored.

5) We do the checking process of their exact edit

distance to the query point for the remaining

candidate points to return those with distance

within r.

K.Manju et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.552-556

www.ijera.com 554 | P a g e

Figure 1.SYSTEM ARCHITECTURE

In RSASSOL algorithm, we find all the sub

graphs that intersect with the query range. Here we

employee the Dijkstra‟s algorithm, that is starting

from the query point q to traverse nodes in G. we

analyze that sub graphs for further explorations,

whenever this traversal needs the first node of new

sub graph. When we reach the boundary of query

range automatically the algorithm terminates.To find

the points from Gi that may share similar strings to

the query strings, examine theeach sub graph Gi, we

use the approximate string search over Gi‟s filter tree

as the next pruning step. Then using the spatial

predicate, we prune the candidate points by

computing lower and upper bounds on their distance

to q using VR, in a similar way to the ALT algorithm.

Given a candidate point p on an age w=(mi,mj), the

shortest path from p to a reference node mr must pass

through either mi or mj.

Network distance

d(p,mr)=min(d(p,mi)+d(mi,mr),d(p,mj)+d(mj,.mr))

 where

d(mi,mr),d(mj,mr) are available from RDISTi and

RDISTj respectively,

d(p,mi) is the distance offset of p to mi which is

available in the adjacency list and the points file of

mi,

d(p,mj)=NDIST(mi,mj)-d(p,mi)

where

NDIST(mi,mj) is available in the adjacency list of mi.

We compute d(p,mr) on the fly rather than

explicitly storing the distance between a point and a

reference node since the number of points much

larger than the number nodes in G. given d(p,mr) and

d(q,mr) for every mrЄVR, we then obtain the distance

lower and upper bounds between p and q using the

triangle inequality. Besides the batch verification, we

support one-at-a-time-verification, which implement

as follows. Verification model consists of two

phases: first, the building phase, second, querying

phase. In building phase, we create λ(r) tuples { id,

r, hash_sig, wt} for each dictionary string r and each

signature generated by r. Hash code of signature is

denoted as hash_sig and wt is the weight of the string

r.

A Query

Find all sub

graphs

Filtering Phase

 Filter Tree

Retrieve points

from strings

Candidate Points

Pruning Phase

By calculating

the lower and

upper bounds

Using the

exact edit

distance

Check the exact edit distance of remaining candidate points Query results

K.Manju et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.552-556

www.ijera.com 555 | P a g e

DatabaseStrings

Figure 2. OVERVIEW OF THE FRAMEWORK

RSASSOL ALGORITHM

1. Find the set X of ids from all the sub graphs

2. Set B = ß ,Bc= ß

3. For each sub graph id j є X do

4. Find all points ids in Ki whose associated strings

α ‟ may satisfy є(α „ ,α) ≤ r using filter tree

5. for every point Pi є Bc do

6. Calculate b
+

(pi , q) and b
–
(pi ,q) as discussed

7 .if b
+

(pi ,q) ≤ r then

8. if є (α i ,α) ≤ r then move pi from Bc to B

9. else delete pi from Bc else

if b
-

(pi ,q) > r then

delete pi from Bc

10. for every point pi є Bc do

11. if є(α i ,α) > r then

12. delete pi from Bc

13. Use the MPALT algorithm to find all points p „s

in Bc

14. Return B

Figure 3.SS-JOIN IMPLEMENTATION

In this section, we perform the String

Similarity joins using edit distance, which is one of

the most common distance functions for string. SS-

Joins are closely related to set-containment joins,

which has been the main part of several previous

works. Generally, similarity joins are closely related

to proximity search. The goal is to retrieve thelookup

closest object.

APPROXIMATE MEMBERSHIP CHECKING

Input: Z,ϒ, S =<t1 ,t2......>

1. Build the filter f (Z,ϒ)

2. Index Z for verification

3. for (Start= 1 to lZ l – L + 1)

4. for (length =1 to L)

5. m ← < t start,tstart+1,tstart +length-1>

6. if(f. prune(m)==true) continue

7. if(Э r ε Z, S. t Similarity(r, m)≥ delta)

8. Output m

V. EXPERIMENTAL SETUP
The system is developed using Java and is used

in the system development. MYSQL is used as a

back end for this system development. Input to this

project is the user‟s string which is related to the

keyword which already in database.

1) The process of entering the string to collect the

exact information about the string.

2) The particular string makes a compare with

related strings which is already stored in the

database by using the ids.

3) Then the id shortlisted the string which is

related to the user string.

Building phase

Input Indexed Exact

String StringString

Querying phase

In memory filter On disk indexed table

Filtering component Verification component

String(id,str) Compare(id1,id2)

Signature(id,sign) Output(id1,id2)

K.Manju et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.552-556

www.ijera.com 556 | P a g e

4) At last by applying the Dijkstra‟s algorithm the

user can get the exact information for the

particular string.

The attention is finally paid to extract the

exact information from the database based on the

comparison between the strings.

VI. CONCLUSION
In this paper, we use the edit distance for the

string predicate as the similarity measurement. And

also address the problem of query selectivity

estimation for the queries in Euclidean space. In the

selectivityestimation for the query range on road

networks where proposed. Even though, they can

only able to estimate the number of loads and edges

in the range. Future work includes examines the

queries of spatial approximate sub-string, designing

methods that are more user friendly and solving the

selective estimation problem for RSAS queries.

REFERENCES
[1] S. Acharya, V. Poosala, and S. Ramaswamy,

“Selectivity Estimation in Spatial

Databases”, Proc. ACM SIGMOD Int‟l

Conf Management of Data, 1999.

[2] S. Alsubaiee, A. Behm, and C. Li,

“Supporting Location-Based Approximate-

Keyword Queries”, Proc. SIGSPATIAL 18
th

Int‟l Conf. Advances in Geographic

Information Systems (GIS), 2010.

[3] A. Arasu, S. Chaudhuri, K. Ganjam, and R.

Kaushik, “Incorporating String

Transformations in Record Matching”, Proc.

ACM SIGMOD Int‟l Conf. Management of

Data, 2008.

[4] A. Arasu, V. Ganti, and R. Kaushik,

“Efficient Exact Set-Similarity Joins”, Proc.

32
nd

 Int‟l Conf. Very Large Data Bases

(VLDB), 2006.

[5] N. Beckmann, H. P. Kriegel, R. Schneider,

and B. Seeger, “The R*-Tree: an Efficient

and Robust Access Method for points and

Rectangles”, Proc. ACM SIGMOD Int‟l

Conf. Management of Data, 1990.

[6] X. Cao, G. Cong, and C.S. Jensen,

“Retrieving Top-k Prestige-Based Relevant

Spatial Web Objects”, Proc. VLDB

Endowment, vol. 3, 2010.

